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Characterization of Nonparametric Classes of Life Distributions

by

Naftali A. Langberg1, RaisOn V. Ledi?’~ and Frank Proschan3

ABSTRACT

In this paper we obtain characterizations of large classes of nonparametric

life distributions, such as the increasing (decreasing) failure rate, increasing

(decreasing) failure rate average, new better (worse) than used , etc., classes.

The methods used differ from the usual functional equation methods used for the

far more common characterizations of parametric families of life distributions.

1Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF,
under Grant AFOSR 76-3109.

2Research sponsored by the National Institute of Environmental Health Sciences,
under Grant 5 T32 ESO7O11.

3Research sponsored by the Air Force Office of Scientific Research, APSC, USAF,
under Grant 74-2581.

~ 
-

~~~~~~~ ~e-~
It~n

~ 0 I
tEl

—

D~~’~ ~~~~~~~~~~~~~~~~

Dz t _ _
~~~
..

_ _ _ _ _ _ _ _ _ _ _ _  J



_ _  __ — -—-~~~~~~~~~
-
~~~~~~ 

. . .- —.-.
~~

Characterization of Nonparametric Classes of Life Distributions

by

Naftali A. Langberg, RaisOn V. LeOn, and Frank Proschan

1. Introduction and Summary. Characterizations of particular parametric

families of life distributions are quite common in the literature (see, for

example, icagen, Linnik, and Rao, 1973, and Patil, Kotz, and Ord, 1975). In

this paper, by contrast, we present characterizations of large classes of

nonparametric life distributions, such as the increasing (decreasing) failure

rate, increasing (decreasing) failure rate average, new better (worse) than

used , etc., classes. (See Section 2 for exact definitions.) Such character-

izations are far less common and generally require quite different mathematical

and statistical techniques.

Our characterizations are based on order statistics, weighted spacings

between order statistics, and total time on test transforms; in most cases

inequalities among limiting expected values determine the characterizations.

Related results concerning total time on test transforms had been obtained

earlier by Barlow and colleagues (exact references are given for each of these

results as they appear in the text below), but not necessarily under the

weakest assumptions on the distributions. Since in characterization, emphasis

is placed on obtaining results under the weakest assumptions on the distributions

being characterized, we have found it useful to prove stronger versions of a

number of these known results--for example, a characterization which requires

that a distribution be differentiable is not as appealing as one that requires

that it only be continuous.



2

In Section 2, we present preliminaries consisting of definitions and

n otation. In Section 3, we present properties of the total time on test

transform and a characterization of the IFR(DFR) class of life distributions

in terms of the concavity (convexity) of the total time on test transform.

iii Section 4, we present characteri zations of the IFR(DFR) classes based on the

‘nonotonicity of the expected values of the weighted spacings between successive

o der statistics; the number of sample sizes required is infinite. By using

the fact that the exponential distribution is both IFR and DFR, we are able

to obtain a strengthened characterization of the exponential distribution, as

compared with the earlier Saleh (1976) characterization. ~e also obtain

additional characterizations of the IFR(DFR) distribution requiring only a

single sample size; of course, we must compensate by making the stronger

assumption. of stochastic monotonicity rather than expected value monotonicity.

in Section 5, we present characterizations of distributions such as IFRA, NBIJ,

~~~~ and ..their duals, which are similar in spirit to those in Section 4 for

the ~FR{LJFR) ciasses.

One final rem ark should be made. Chandra and Singpurwalla (1978) have

rojnted out the close raltionship between the total time on test transform

~nd the Lorenz curve used by economotrists. Thus, some of our results of

Section 3 concerning total time on test transforms can be used to obtain

analogous resu1ts~ for the Lorenz curve, and may thus be of interest and value

in fields other than reliability.

A
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2. Preliminaries. Let F be a life distribution, that is F(O-) • 0. We

use the following notation and conventions: F~~ (t) inf(x: P(x) > t},

t £ [0 , 1); F~~ (l) sup{x: F (x) c 1); F 1 - F; R —Ln V. We use

“increasing” in place of “nondecreasing” and “decreasing” in place of

“nondecreasing”.

Next we define the classes of life distributions to be considered in the

sequel.

Definition 2.1. (a) F is increasing failure rate (IFR) if

+ x)/F(t) is decreasing in t (-~ 
< t < F 1 (l) )  for each x > 0.

(b) F is (shifted) decreasing failure rate (SDFR) if V(t + x)/~ (t) is

increasing in t(F4(O) � t < ‘s) for each x > 0.

Cc) F is increasing failure rate average (IFRA) if ~R( t) is increasing

- — in t (0 c ~ c F~~(l)).

(d) F is decreasini failure rate average (DFRA) if ~R( t) is decreasing

in t > 0.

(e) F is new better than used (NBU) if F(x + y) � V(x) V(y) for

x > 0 , y > O .

(f) F is new worse than used (NWU) if V(x + y) � V(x) V(y) for x > 0,

y ‘. 0.

(g) P is new better than used in expectation (NBUE) if (i) J xdP (x) c

(ii) J P (x)dx � (f xdF(x))V(t) for t ‘ 0.
t 0
(h) F is new worse than used in expectation (NWUE) if J V(x)dx �

t
Cf xdP (x))F(t) for t > 0.
0

The chain of implications IFR — IFRA ~~ NBU ~~ N BUE is readily established

(see Marshall and Proschan , 1972) . 

“. . - - “-.—~~~~~~~~~-~~~~~~ —--~ ~~~~~ -~~~~~~~~-- -,- -— . - ~~- .~~
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Let X 1, X2, ..., X be a random sample of size n from F. The k-tb

weighted spacing, Wk:fl~ 
between order statistics Xk...l,fl and Xk:fl is defined

by Wk:fl (n - k + 1) . (Xk :fl  - Xk l:fl) for k = 1, 2, . . .,  n, where X0.~ - 0.

The total time on test up to the k-th order statistic, T(Xk. ) ,  is defined by
k

T(X k .fl ) = 
~ ~~~ for k = 1, 2, ..., n, and T(X0~~) 0. If we assume that n

i~ l
items are placed on test at time 0 and that successive failures are observed

at times Xl:n � X2:n � � then Wk.fl represents the total test time

observed between and Xk I  and T(Xk.fl) represents the total test time

observed between 0 and Xk:fl (see Barlow and Proschan, 1975, p. 61).

L . .~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r~r~ 
.. ---—

~~~~~~~~~~~ 

— . -

~~~~~

- -

5

3. Properties of the Total Time on Test and Its Transforms . Let
— l

H~~(t) 1
F (t)V(u)du for 0 ~ t S 1. Barlow and Cainpo (1975) call the

total time on test transform. In this section we develop some of the

properties of H 1.

Before starting the first theorem we need two definitions.

Definition 3.1. A point x is a point of increase of F if

F(x - h) c F(x) c F(x + h) for every h > 0.

Definition 3.2. A sequence {(k
~
, 
~r~~~=i 

of ordered pairs of natural

numbers is a t-seguence (0 S t 5 1) if (i) 1 � kr ~ ~r 
nr + 1 for all r,

and (ii) ks/n ÷ t as r

Theorem 3.3. Let F~~(t) be a point of increase of F, and let (k, n) range

over a t-sequence. Then as n ~~~,

iT(Xi,~~
) .H ’(t) a.s.

Proof. Let F~ denote the empirical distribution function of F. Then

T(X k :n ) = n H ’[’C 

~
) = 1~~~

n 
~n
(u)du (see Barlow and Campo, 1975) . Also

for (k, n) ranging over a t-sequence, 
~
11~:n 

+ F~~(t) a.s. as n . since

is a point of increase of F (see Rao, 1973, p. 423). The desired result

follows . by the Glivenko-Cantelli Theorem (Chung, 1974, p. 123). ~I
Next we note that if EX1 is finite, then EXk.n, BWk:fl~ 

and ET(Xk.n)

are also finite, since 0 S Xk :fl � T(Xk:n) � ~ Xl n ç. This observation
i—i

can be used to show that whenever EX1 is finite, ~~r
T r:nr~~r”1 is

uniformly integrable for every t-sequence {(kr~ ~r~~~”i 
Since a uniformly

convergent sequence which converges almost surely converges in mean (see

Breiman, 1973, p. 91), we can state the following result.
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Theorem 3.4. Let t, k, and n be as in Theorem 3.3 and let EX1 be finite.

Then ~~ T(X~.) - H~~(t)l 0 as n -
~~ ~~. In particular, 

~
ET(Xk:n) + H~~(t) as

n + ~~.

We remark that neither Theorem 3.3 nor Theorem 3.4 is true if t is

not a point of increase of F. In this case a counterexample to Theorem 3.3

and to Theoret’~ 3.4 can easily be constructed using the facts that

u r n  = F 1(t-) and TT~ F~~(t-) and that F~~(t-) ~ F~~(t).fl4~
(1J denotes th~ greatest integer function). To show that lLm X

1 ~~~~~~ 

* F (t)

and TIiii Xr t]. F~~(t), use the fact that P[XI~ti: 
> xl = PCB(n, F(x)) >

n - Enti + 1], where B(n, F(x)) denotes a binomial random variable (see

~4ooc1, ~~~~~~~ and Boes, 1974, p. 252), and the law of the iterated logarithm

(see Breiman, 1968, p. 291).

T.et ~f (x 0) denote the right-hand derivative of f at the point x0. We

..ve the following letna.

Lrn. ’~ ~.5. Let x be a point of increase and of continuity of F. Then
‘I-T~

1(F(x)) exists and is nonzero if and only if ‘R(x) exists and is nonzero.

in either case, ~H~~(F(x)) 
‘R(x) = 1.

Proof. Note that in a neighborhood of x, F 1 behaves like the usual

invcrse function of F. The result follows using standard differentiation results. H
The next proposition is easily verified.

Proposition 3.6. The life distribution F is (i) IPR if and only if

~ither F is degenerate or R(x) is convex on (F~~(0), F~~(l)) and P(F 1(0)) • 0;

(ii) SDFR if and only if R(x) is concave on (F~~(0), ~~
) .

The following simple properties of will be needed in the proof of

our next theorem.
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( 3 . 1 )  il~~(0) = F~~(0).

(3.2) H~
1(t +) = H~~(1) = EX 1.

(3.3) H~~(l -) = HF~
(l) = EX1.

(3.4) is increasing on [0, 11.

(3.5) For y £ [0, ~ ) ,  the set {s: Us (s) = y} = [a , b) ,  where

< a < b � 1, if and only if P(X = P 1 (a)) = b - a.

(3.6) For 0 5 a < 1, H~~(a -) H~~(a) if and only if F(F~~(a -) )  a

F(F~~(a)). In particular I1~
’ is continuous on [a, b) if and only if every

.~~ nt in (F~~(a), F
1 (b -)) is a point of increase of F.

Theorem 3.7. (Barlow and Campo, 1975). The life distribution F is

t;:~(SDFR) if and only if I1~~ is concave (convex) on [0, 1].

—l . — 1 .Proof. Let be concave on 10, 1]. Since 11F is increasing on [0, 11 ,

~~L~~~~~C ‘xists a real number A in 110, 1] such that H~
1 is strictly increasing

~~~~ 
rç~ A l ard constant on [A, 1]. If A = 0, is constant on [0, 11 and

.c~rtsequent1y, F is the IFR distribution degenerate at F
1 (O). Next suppose

:hat A > 0. It f~ilows that H~~(t) ~ 0 for all t c (0, A). Equivalently,

> 0 for x in (F
_
~ (O) , F~~(l)) since F~~(A-) = F~~(l). By (3.5)

~rd (3.6), every point of (F~~(0), F~~(l)) is a point of increase and of

-~‘rnt inuity of F. Ilence, by Lc~nma 3.5, the concavity of implies that 4R(x)

exists and is increasing on (F~~(0), F ’(l) ) ,  that is, R is convex on

(F~~(0), F~~(l)). Since by (3.6) F(F~~(0)) = 0, then F is IFR by Proposition 3.6.

Next let F be IFR . By Proposition 3.6 either F is degenerate in which

case f l~
•1 is cor.stant and thus concave or R(x) is convex on S (F ’(O) , F~~(l))

~nd R(F
1(0)) = 0. Assuming the latter, let x c S and h > 0. Then
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0 < 
R(x) - R(F~~(O)) ~ R(x + h) - R(x)

x - F~~(0) 
h

Consequently ~R exists and is positive on S. Now since +F a ~ ~R is positive
on S, S contains only points on increase and of continuity of F. Thus by

Lemma 3.5, ‘H~~o F is decreasing on S, that is, ~H ’ is decreasing on (0, 1).

Hence is concave on (0, 1). Since an IFR distribution has a finite mean

by (3.2) and (3.3), is concave on [0, ii.

The counterpart results for the SDFR case can be proved similarly . I I
Theorem 3.7 is due to Barlow and Campo, 1975 (see also Barlow, 1977),

but our proof is new. Our proof avoids some technical difficulties which

• ~~~ ip the limiting argument used in the Barlow and Campo proof of the
“if ” part of Theorem 3.7.

L
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4. Characterizations oi~ the IFR(Sb~R) Class. Barlow and Proschan (1966)

~iave shown that if P is IFR(SDrR), then for all x > 0, P(Wk:n > u) is

decreasing (increasing) in k (k = 2, 3, . . .,  n) for all n ~ 2. If F has a

finite mean, then E Wk:fl < for a~.l ch ~es of k and n and consequently

Wk:n is decreasing (increasing) ir. k(k 2, 3, ..., n) for all n ~ 2. In

this section we prove that a ~iightly beaker version of the last condition

is sufficient for F to be IFP~(S~i~ ). Then w~ use this result to obtain a

characterization of the shiftcd ~-I~ nential obtained by Saleh (see Kotz,

1974), who required stronger re~uiarity coiditions on F than we require. Two

other characterizations of the Ii~R(SDFR) are given.

The main result of this Section follows.

Theorem 4.1. Let F be a continuous life distribution with finite mean.

.~en F is IFR(SDFR) if an-i only if £ Wk is decreasing (increasing) in

2, . . . ,  n) for infinitely many n.

The ‘~only if” part has already been shown. To prove the “if” part, we

~ed the following lemma. This lemma shows that every point in the support

t ’f F is ~
‘. noint of increase of F. Thus Theorem 3.4 can be used at every point

~)f th~ support of F to show that li~~ is concave (convex), that is, F is

IFR(SDFR) by Theorem 3.7. We remark that this proof avoids all assumptions

on F other than continuity. [If we are willing to assume the existence of

a positive continuous density f everywhere in the support of F, we can

~btain a more direct proof of the “if” part of Theorem 4.1 by using the fact

that in this case 
~~~~~~ 

converges in distribution to an exponential

distribution with failure rate r(F~~(t)), where r(t) 
KIt) is the failure
F (t)

rate of F (see Pyke, 1965).)

—

~

—,-- .-

~

.-

~ 

---- ~~~~ -- -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -,-.-.- ~~~~~~~~
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Lemma 4.2. Let F be a continuous life distribution with finite mean.

Let E Wk:n be decreasing (increasiw’) in k (k = 2, . . . ,  n) for infinitely

many n. Then the support of F is the interval [F~~(0), F~
1(1)1.

Proof. The support of a continuous distribution is a closed set without

isolated points (see Chung, 1974, p. 10). It follows that if S, the support

of F, is not an interval we can find a, b , and c such that (a - c, al c

(a, b) c ~
. S {x: x ~ S}, and Ib , b -

~
- e) c S. Let t F(a) = F(b),

= ~ + - 

~ and t
2 

= (t + F(b + £))/2. Also let h > 0 be small enough

so that Ct1 
— h, t1 + h] c (P(a — c), t) and It

2 
- h , t

2 
+ h . c (t , F(b +

Since T(Xk ) ~ W , we obtain for each one of the infinitely many n that
i=1

ET(X ([n(t h))+E 2h)) :n) 
- ET(X i ( h)) )

(4.1) �(�) ET(X(E (t h)]C2h]) - ET(X
t ( h )))

�(�) ET(X([(t h)I [2h]) - ET(X[(t h)I )

The points at which F equals t1 
- Ii, t 1 

+ :L . t - h, t + h, t2 - h, and t2 + h

are all in the interior of S and are consequently points of increase of F.

Applying Theorem 3.4 to the chain of inequalities (4.1), we conclude that

+ h) — II~~(t1 - h)

(4.2) �(�) H~~(t + h) - H~~(t - h)

�(�) W1(t + h) - H 1(t2 
- ii).

1 F 1(’) F 2

Since H.~ ( )  = f F(u)du is continuous at t
1 and t~, letting h + 0 in (4.2),

0 1 1 1we conclude that u r n  H (t + h) - H ’(t - h) = 0. But since H is increasing,
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this implies that is continuous at t, or equivalently, that F 1 is continuous

at t. This contradicts the fact that F is constant on (a, b). It follows

that S must be an interval. The desired result follows. 
~

We now complete the proof of Theorem 4.1.

Proof of Sufficiency. Let t1, t2, and h be such that 0 s t1 
c t2 c t2 

+ h � 1.

Using the argument in the proof of Lemma 3.8 yielding (4.2), we obtain:

(4. 3) Iç’(t1 + h) — H~~(t1) � (�) I1~~(t~ + h) — H 1(t2).

Since (4 .3) is true for all t1, t2, and h satisfying the constraints above,

must be concave (convex) on [0, 13. By Theorem 3.7 , this implies that F

is IFR(DFR) . II
It is clear from the proof of Theorem 4.1 that the following characterization

of the IFR(SDFR) class is also true.

Theorem 4.3. Let F be a continuous life distribution with finite mean.

Then F is IFR(SDFR) if and only if for infinitely many n � N and some t(l � t .c N)

k+L
E ZW i:ni=k

is decreasing (increasing) in k(l � k � n - 9.) .

Note that F is both IFR and SDFR if and only if F is shifted exponential ,

that is ,

— 
IC - A(x - F4(0)) x � F~~ (O)

F (x) = ii x c

for some positive A. hence as a corollary of Theorem 4.1 we obtain the

following: 
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Corollary 4.4. Let F be a continuous life distribution with finite mean.

Then P is shifted exponential with mean p if and only if for infinitely many

n � 2 , E W k:n 2
~~~

forka 2, 3, ..., n.

A similar characterization was obtained by Saleh (1976) but with the

additional (unnecessary) condition that inf(x: F(x) � t } is differentiable

on (0, 1).

Now we give another characterization of the IFR(SDFR) class which requires

conditions for only one sample size. Since

(4.4) P(X 1 
- X > U~X = x) a (~~(~ +

(see David, 1970, p. 18), the following result holds:

Theorem 4.5. The distribution P is IFR(SDFR) if and only if for some

fixed n and m (2 � m + 1 � n), and all u � 0, P(X m+i:n 
- Xm :n ) UIXm:n — x) is

decreasing (increasing) in x(-c’ ‘C x < F 1(l)) ‘~(F~~(0) � x c cci)].

Actual ly if  F is IF R(SDPR) , then P (X m+i:n Xm:n > UIXm:n a x)  is

decreasin g (increasing)  in x f or  all n and m, where 2 � in + 1 5 n. However

since the emphasis of this paper is on characterizations, we omit this

generalization from the statement of Theorem 4.5. A similar remark can be

made about other theorems in this paper (see Theorem 5.1 for example).

Recall that a random variable X is stochastically increasing (decreasing)

in Y, another random variable, if  f or  all x, P(X > x f Y  - y)  is increasing

(decreasing) in y. Hence Theorem 4.5 can be restated using this language.

Similar remarks apply to other theorems in this paper (see for exa~~1e

Theorems 5.1 and 5.3).
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5. Characterizations of Classes of Life Distributions Other Than the

IFR(SDFR). In this section we characterize classes of life distributions other

than the IFR(SDFR). The following two characterizations are similar in

s~iritV the characterization of tiie IFR(SD’~R) class given in Theorem 4.5.

By (4.4) we immediately obtain:

Theorem 5.1. The life distribution P is NBU(NWU) if and only if

P(X i:n m > u) � (�) P(X 1 
- Xm:n > U~X = x) for some fixed n and m

(1 � m < n),  and all u � 0 and x � 0.

Since E(X .n - Xn_ i:n IXn_i:n x) = (( ~ (u)du)/~ (x) ,  we also have :

Theorem 5.2. Let F be a life distribution with finite mean. Then F is

NBUE (NMJE) if and only if E(Xn:n Xn_ l:n IXn_ l:n = x) �(�) EX 1 for some fixed

n � 2, and all 0 � x c F~~(l).

Next we give a characterization of the IFRA(DFRA) class:

Theorem 5.3. Let P be a life distribution such that F(0) — 0. Then P

is IF RA if  and only if  f or  al l x > 0, P( W1:~ > x)  is increas ing in n � N ,

where N is arbitrary.

Prcc~. We have for 0 � x < 
~~~
, P(W 1 > x) - ~~ (x/n).

It follows that P(Wi:n > x) is increasing in n ~ N for all x > 0

if and only if

(5.1) ~ ‘(x/ n ) �~~~(x/m) for a l l N � n < m a n d a l 1 0 � x < ” .

Recall that F is IF RA if and only if

l/t 2 l/t 1 I(5.2) V (t2) � V (t1
) f or  all 0 c t1 ~~. t2 c F (1).

We show that (5.1) implies (5.2). Let 0 c t1 
c t2, both be rational,

t2 1and let N � n c in be n~~ural numbers such that ~— a Let ~ — (m1t1)
1 

-~~~~~~~~~~~~~~~ ------ . . - ~~~~-- •-- ,,-- -.~~~~~~ 
.-~~~ ~~~~~~~~~~~~~~~~~~ 
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Then na = l/
~ 2 and ma = l/t1, so it is easily seen that (5.1) implies that

lit2 1,’tl I —F (~..t2) � P (Xat 1). Letting x = a , (5.2) follows since F is right

continuous and the rationals are dense.

To show (5.2) i~p1ics (5.1), let x, n, and m be such that x � 0 and

~4 � n < in. If x = 0, then ~~(x/n) = P~(x/m) = 1 since P(0) a 0 so (5.1)

follows. If x/~ � F
1(1) then I~(x/~) = 1 and (5.1) also follows. If 0 < x and

Z < ~~
1 (1), then set t, = x/nt and t 2 x/n in (5.2) to obtain (5.1). t t
The following dual theorem has a similar proof which we omit.

Theorem 5.4. Let F be a life distribution. Then F is DFRA if and only

for all x > 0, P~
Y1 > x) is decreasing in n � N, where N is arbitrary .

To prove our next result we need a the-rem of Barlow and Proschan (1966) .

Let ~~(; h.we distribution FCC). We assume that F(0) a 0 = G(O), and

~hat F and C are cc’ntinuous. i.’e also assume that the support of F is an

ir.terval, pos5~b)y inrinite, and that C is strictly increasing on i4 support.
G~~F(x)Theorem 5.5. (B~.rlow and Proschan, 1956, Theorem 3.6). Let

~e increasi.:g in x in th~ support of P. Then £Xi:n/EYi:n is decreasing in i

Theorem 5.6. Let F be a continuous life distribution with finite mean.

Assume that the support of F U ~tn interval and that F(0) = 0. Then F is

IFRA(DPRA ) if and or ly if ~X . .../ ( ~~ l/ (n - k + 1)) is decreasing (increasing)
~~~
“

in i (i = 1, 2, . . . ,  n) for infinitely many n.

‘roof. Let C i: Thoorem 5.5 be the exponential distribution with mean 1.
1

Then EY.~~ = 1 (see Barlow and Proschan, 1975, p. 60). Thus
k= l n - k i ~~

necessity follows fror Theorem 5.5 (as does the dual result for the opposite

direction of monotonicity) if we note that G~~(x) = -Ln(l - x).
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~~~-~~~~~~~~~~ ~~~~~~~~ - .
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To prove sufficiency, first observe that every point in the support of

F(G) is a point of increase of F(G) . Hence 
~[nt]~n + G 1 (t) a -tn(l - t) and

X[nt]:n + F4(t) a.s. as n + ~~. We show {X[flt).fl}~~l is uniformly integrable.

We have

P(X [fl t] : > x) = P(B(n, P(x)) > n - [nt] + 1),

where B(n , V(x)) denotes a binomial random variable with parameters n and

V(x) . Thus

(5.3) P [X c t j  ~ n - Exit] + ~ 
V(x)

since P(Z > t) � for any nonnegative random variable Z. Hence

EXr IEX �A JLnt]:n [nt]:n

f P[X
~~t3 > x]dx + APIX1tj � A~

[by integration by parts]

n - + ~ 
Cf V(x)dx + A VGA))

[by (5.3)J

5 — (EX IEX � A]).
1 1

n n
It follows that X(~t ) :x i  (and similarly 

~[nti~n is a uniformly integrable sequence

in n. Consequently , EX fnt] :n  + F~~(t) and EY Eflt ] n + G4(t) as n -‘ ~~. Thus

by hypothesis, F~~(t)/(-tn(l - t)) is decreasing (increasing) in t (0 ‘C t ‘C 1).
P 

_______Equivalently, F C (x)) X is decreasing (increasing) in x
-Ln(l - F(x)) -LnF (x)

(0 c x < F 1(l)) .  Sufficiency follows . ~
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Now we characterize the NBLJ (NWU ) class. First we prove a lemma.

Lemma 5.7. Let F be a continuous life distribution. Then F is NBU (NWU)

if and only if F~~ (t + s - ts) �(�
~
) F~~(t) + F~~(s) for every t and s such that

F4(t) and F~~(s) are points of increase of F.

Proof. Let F~~(t + s - ts) � F~~(t) + F ’1 (s) for all t and s such that

F~~(t) and P~~(s) are points of increase of F. To show that F is NBU, it is

enough to show that V(x + y) s V(x) ~(y) for all x and y c 0 {z > 0:

F(z - e) < P(z) for all c > O}. But since V is continuous for each x and y e 0,

we can find sequences {x~} and of points of increase of P such that x~ + x

and y~ + y as n + ~~. Thus it is enough to show P(x + y) � F(x) V(y) for all x

and y which are points of increase of F. Let x and y be two such points and

let t = F (x) and s = F(y). Then t + $ - ts 5 P(F4(t + s - ts)) S P(F~~ (t) +

F~~(s)) by hypothesis. Hence 1 - t - s + ts � F(F~~(t) + F~~(s)); that is,

V(x) V(y) � F(x + Y) as desired .

Necessity follows by reversing the steps of the last three sentences above . ~
Theorem 5.8. Let F be a continuous life distribution with finite mean.

Then F is NBU (NWU) if and only if for every t and s in (0, 1) such that F4(t)

and F~~(s) are points of increase of F, we have

E(K[t]+C (l t) l: - XIt ] IXEt ] )

for infinitely many n.

Proof. We first prcve sufficiency. Let t and s be such th~t P~~ (t) and

F~~ (s) are points of increase of F let n always range over the infini te

.—~~~~~~~~~~~~~~~ ~~~~-~~~ ‘.~~~~~~-—-. -
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sequence of the hypothesis. By the Markov property of order statistics, we
have

(5.4) P (x) P(X[nt~+En (l_t)S]:n ~~~~ > X 1X 1 3 )

a.s. V(x + X r t]— P(B(n - CntJ , 1n 
~~~~ 

) > n - int] - En(l - t)s] + 1),P (X [ ] )

where B(n, p) is a binomial random variable with parameters xi and p.
But since P~~ (t) is a point of increase of F , then by the SLLN and the

fact that XE t ]  + P~~(t) a.s. as n -~. ~~, we have

(5. 5) 
~~ ~~~ 

B(n - Exit ) , 
— 

~ + 

1 - tF(X~~~J

a.s. as xi .. 
~~. Hence by (5.4) and (5.5),

P(X C t ] E ( l  - t)s3:n - X
~~tj 

> x I X c~t3 .~ )

1 if x ‘C F~
4(~ + s - ts) - F 1(t)

(5.6) +

0 if x > F~~ (t + $ - ts) - F4(t)

a.s. as n + ~~.

Now (5.4) and the inequality P(Z > t) S (t > 0) imply that
a.s. (n - fnt])V(x + ~~~ 

~~~~
•P~(x) 

~~~~~~~~~~~ EntJ - [n(l - t)s ] + T —

[nt] :n)
a.s.f (n - Ent]) 

— F(x) .
(xi — tnt ] - En(1 + t)s) F(X E t i

L ~~~~~~~~~~~~~~ _ _ _ _ _  _ _
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Since f V(x)dx < 
~~
, X~~~1 + F

1(t) a.s. as n + 

~~~~~~ 
V(F~~(t)) > 0, it

follows that for all sufficiently large n, P~ (x) � g (x) , where g(x) is

integrable. Thus by the Lebesgue dominated convergence theorem,

E(X r t
.
I+c (l t)j - X

c~~j
) = f P~ (x)dx

-‘. F 1(t + s - ts) - F~~(t) a.s. as n + ~~.

Since X[(1 t)Si:fl_ [fltl 
+ F~~(s) a.s. as xi ~~

. o~ we have by hypothesis

that F 1(t + s - ts) S F~~(t) + F~~(s). Sufficiency follows from Lemma 5.7.

To show necessity, let X(H) denote a random variable with distribution H.

For y � 0, let 
~ 

~(x + y)/V(y). Then F is NBU (NWU) if and only if for

all y > 0, X(G ) is stochastically smaller (larger) than X(F), written
st st 

y

X(G~) S (� ) X(F). Hence if F is NBU (NWU), then for all y � 0, 0 < t < 1, and

O < s < l ,

st St
� (� )X(F)E (l t)] Et )

But by the Markov property of order statistics, the conditional random

variable XCflt)+[fl(l_t)S]:fl 
- X[flt]:U IX [flt] = y has the same distribution as

the random variable X(Gy)Efl(l t)$j,fl_ [flt] necessity follows. ~~ f

Obsetve that by the Markov property of order statistics,

n-[nt ]
ii - tnt) E(~~ X(flt]+k.fl - X[t ) IX C t ) )

a s .  ~ 
V(X + X r~ t3~~)dS 

.
~~~~
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Hence we can use the methods of the proof of Theorem 5.8 to obtain the following

characterization of the NBUE (NWUE) class.

Theorem 5.9. Let F be a Continuous life distribution with finite mean.

Then F is NBUE (NWUE) if and only if for every t in (0, 1) such that F 1(t)

is a point of increase, we have

n-[nt ]

n - Ex it] E (Z X[t] k - EX
Et J IX I J  � EX 1

for infinitely many n.

-~~~~~~~ __ _  _
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